L28 Epicutaneous Immunotherapy (EPIT) Is Effective and Safe to Treat Peanut Allergy: A Multi-National Double-Blind Placebo-Controlled Randomized Phase IIb Trial

Hugh A. Sampson, MD¹, Wence Agbotounou, PhD², Claude Thébault², Ruban Charles², Laurent Martin, PharmD², William H. Yang, MD³, Gordon L. Sussman, FAAAAI⁴, Terri F. Brown-Whitehorn, MD⁵, Kari C. Nadeau, MD PhD FAAAAI⁶, Amarjit Singh Cheema, MD⁷, Stephanie A. Leonard, MD⁸, Jacqueline A. Pongracic, MD FAAAAI⁹, Christine Sauvage¹⁰, Amal H. Assa'ad, MD FAAAAI¹¹, Frederic de Blay¹², J. Andrew Bird, MD FAAAAI¹³, Stephen A. Tilles, MD FAAAAI¹⁴ Franck Boralevi¹⁵, Thierry Bourrier¹⁶, Wayne G. Shreffler, MD PhD FAAAAI¹⁷, Jacques Hébert, MD¹⁸, Todd David Green, MD FAAAAI¹⁹, Roy Gerth van Wijk, MD FAAAAI²⁰, André C. Knulst²¹, Gisèle Kanny, MD, PhD²², Marek L. Kowalski, MD PhD²³, Lynda C. Schneider, MD FAAAAI²⁴, Pierre Henri Benhamou, MD², Christophe Dupont, MD PhD 25 ; 1 Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA, ²DBV Technologies, Bagneux, France, ³University of Ottawa Medical School, Ottawa, ON, Canada, ⁴University of Toronto, Faculty of Medicine, Toronto, ON, Canada, ⁵The Children's Hospital of Philadelphia, Philadelphia, PA, ⁶Pediatric Allergy Immunology, Stanford University, Stanford, CA, ⁷Alpha Medical Research, Mississauga, ON, Canada, ⁸Rady Children's Hospital/UCSD, San Diego, CA, ⁹Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, ¹⁰Saint Vincent de Paul Hospital, Lille, France, ¹¹Cincinnati Children's Hospital Medical Center, Cincinnati, OH, ¹²CHRU Strasbourg, France, ¹³UT Southwestern Medical Center, Dallas, TX, ¹⁴Northwest Asthma & Allergy Center, Seattle, WA, 15Hôpital Pellegrin-Enfants, Bordeaux, France, ¹⁶Lenval Hospital, Nice, France, ¹⁷Massachusetts General Hospital, Boston, MA, ¹⁸Centre de Recherche Appliquée en Allergie de Québec, Québec City, QC, Canada, 19 Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, ²⁰Erasmus Medical Center, Rotterdam, Netherlands, ²¹University Medical Center, Utrecht, Netherlands, ²²CHU Nancy Hopital Central, Nancy, France, ²³Medical University of Lodz, Lodz, Poland, ²⁴Boston Children's Hospital, Boston, MA, ²⁵Hopital Necker Enfants Malades, Paris, France.

RATIONALE: To date there is no specific approved treatment for peanut allergy. EPIT is well tolerated and appears promising for the treatment of peanut allergy.

METHODS: In a multicenter double-blind, placebo-controlled phase IIb trial, 221 subjects (6 – 55 years) reacting at a peanut protein (pp) eliciting-dose (ED) ≤300mg during DBPCFC were randomized to 1 year Viaskin[®] Peanut (VP), at different doses (50μg, 100μg, 250μg pp), or Viaskin[®]placebo. The primary efficacy endpoint at 1 year was the proportion of responders with a pp ED 10-fold greater than the pp ED at entry or achieving a post-treatment ED≥1000mg. Cumulative reacting dose (CRD) of pp was also measured. Immunologic studies were performed at entry, 3, 6 and 12 months.

RESULTS: The overall primary efficacy endpoint was met, with VP250 showing best results: 50.0% responders vs 25.0% with placebo, p=0.0108; children (6-11 years) exhibited 53.6% responders vs 19.4% for placebo, p=0.0076. In children, the mean CRD showed a VP dose-dependent response: +61mg, +471mg, +570mg and +1121mg for placebo, VP50, VP100 and VP250 respectively. Children's immunological responses were robust: with VP250 - PN-IgE exhibited a median increase ≥50 kU_A/L at 3 months and decreased back to baseline at 12 months; median PN-IgG4 at 12 months increased in a dose-dependent fashion: 5.5-, 7.2- and 19.1-fold for VP50, VP100 and VP250, respectively. Compliance was >95%, dropout for adverse events <1%, and there were no serious adverse events related to treatment.

CONCLUSIONS: In peanut allergy, EPIT appears safe and effective; the CRD was dose-dependent and maximum efficacy was seen with VP250.

L29 Natural History of Peanut Allergy and Predictors of Persistence in the First 4 Years of Life: A Population-Based Assessment

Rachel L. Peters, MPH^{1,2}, Katrina Jane Allen, FRACP, PhD, FAAAAI³, Shyamali Dharmage, MD PhD¹, Jennifer Koplin, PhD⁴, Thahn Dang, PhD⁴, Adrian Lowe, PhD^{1,2}, Mimi L. K. Tang, FRACP, PhD, FAAAAI^{3,5}, Lyle Gurrin, PhD^{1,2}; ¹University of Melbourne, Victoria, Australia, ²Murdoch Childrens Research Institute, Victoria, Australia, ³Royal Children's Hospital and Murdoch Childrens Research Institute, Melbourne, Australia, ⁴Murdoch Childrens Research Institute, Australia, ⁵Murdoch Children's Research Institute, Melbourne, Australia.

RATIONALE: There is no prospectively collected data available on the natural history of peanut allergy in early childhood. Previous studies have been biased by failure to challenge high-risk children when IgE antibody levels are high, potentially biasing towards persistent allergy. We sought to describe the natural history of peanut allergy between ages 1 and 4 years and develop thresholds for skin prick test (SPT) and serum specific-IgE (sIgE) that have 95% positive predictive value (PPV) to persistent peanut allergy.

METHODS: Challenge-confirmed peanut allergic 1-year-old infants (n=156) from the population-based, longitudinal HealthNuts Study (n=5276) were followed up at 4 years of age with repeat oral food challenge, SPT and sIgE (n=103). Challenges were undertaken at both ages 1 and 4 years, irrespective of risk profile.

RESULTS: Peanut allergy resolved in 22% (95% CI 14-31%) of children by age 4 years. Falling wheal size predicted tolerance while increasing wheal size was associated with persistence. Thresholds for SPT and sIgE at age 1 with 95% PPV to persistent peanut allergy are SPT \geq 13mm and sIgE \geq 5.0 kU/L. Thresholds for SPT and sIgE at age 4 with 95% PPV to persistent peanut allergy are SPT \geq 8mm and sIgE \geq 2.1 kU/L. Ara h2, tree nut and house dust mite sensitisation, coexisting food allergies, eczema and asthma were not predictive of persistent peanut allergy.

CONCLUSIONS: These thresholds are the first to be generated from a unique dataset where all participants underwent OFC at both diagnosis and follow-up, irrespective of SPT and sIgE.